Molecular architecture of the basal transcription factor B-TFIID.
نویسندگان
چکیده
BTAF1 (formerly named TAF(II)170/TAF-172) is an essential, evolutionarily conserved member of the SNF2-like family of ATPase proteins and together with TATA-binding protein (TBP) forms the B-TFIID complex. BTAF1 has been proposed to play a key role in the dynamic regulation of TBP function in RNA polymerase II transcription. We have determined the structure of native B-TFIID purified from human cells by electron microscopy and by image analysis of single particles at a resolution of 28 A. B-TFIID is 15 x 9 nm in size and is organized into a large domain of about 170 kDa, which can be subdivided into two domains. Extending from this domain is a long thumb, which in turn is divided into subdomains of about 25, 15, and 35 kDa, the largest of which is located at the end of the thumb. Immunolabeling experiments localize the extreme carboxyl terminus of BTAF1 within the 170-kDa domain, whereas the amino terminus and TBP co-localize to the end of the protruding thumb. The central portion of BTAF1 localizes to the base of the thumb. Comparison of the native B-TFIID with its recombinant form shows that both share a similar domain organization. Collectively, these data provide the first structural model of the B-TFIID complex and map its key functional domains.
منابع مشابه
Positive and negative TAF(II) functions that suggest a dynamic TFIID structure and elicit synergy with traps in activator-induced transcription.
Human transcription factor TFIID contains the TATA-binding protein (TBP) and several TBP-associated factors (TAF(II)s). To elucidate the structural organization and function of TFIID, we expressed and characterized the product of a cloned cDNA encoding human TAF(II)135 (hTAF(II)135). Comparative far Western blots have shown that hTAF(II)135 interacts strongly with hTAF(II)20, moderately with hT...
متن کاملPurification of Active TFIID from Saccharomyces cerevisiae
The basal transcription factor TFIID is composed of the TATA-binding protein (TBP) and 14 TBP-associated factors (TAFs). Although TBP alone binds to the TATA box of DNA and supports basal transcription, the TAFs have essential functions that remain poorly defined. In order to study its properties, TFIID was purified from Saccharomyces cerevisiae using a newly developed affinity tag. Analysis of...
متن کاملCloned yeast and mammalian transcription factor TFIID gene products support basal but not activated metallothionein gene transcription.
Transcription factor IID (TFIID), the "TATA binding factor," is thought to play a key role in the regulation of eukaryotic transcriptional initiation. We have studied the role of TFIID in the transcription of the yeast metallothionein gene, which is regulated by the copper-dependent activator protein ACE1. Both basal and induced transcription of the metallothionein gene require TFIID and a func...
متن کاملAcetyl coenzyme A stimulates RNA polymerase II transcription and promoter binding by transcription factor IID in the absence of histones.
Protein acetylation has emerged as a means of controlling levels of mRNA synthesis in eukaryotic cells. Here we report that acetyl coenzyme A (acetyl-CoA) stimulates RNA polymerase II transcription in vitro in the absence of histones. The effect of acetyl-CoA on basal and activated transcription was studied in a human RNA polymerase II transcription system reconstituted from recombinant and hig...
متن کاملNovel cofactors and TFIIA mediate functional core promoter selectivity by the human TAFII150-containing TFIID complex.
TATA-binding protein-associated factors (TAFIIs) within TFIID control differential gene transcription through interactions with both activators and core promoter elements. In particular, TAFII150 contributes to initiator-dependent transcription through an unknown mechanism. Here, we address whether TAFIIs within TFIID are sufficient, in conjunction with highly purified general transcription fac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 279 21 شماره
صفحات -
تاریخ انتشار 2004